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Theory and applications of ray chaos to underwater acoustics
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Chaotic ray dynamics in deep sea propagation models is considered using the approaches developed in the
theory of dynamical chaos. It has been demonstrated that the mechanism of emergence of ray chaos due to
overlapping of nonlinear ray-medium resonances should play an important role in long range sound propaga-
tion. Analytical estimations, supported by numerical simulations, show that for realistic values of spatial
periods and sound speed fluctuation amplitudes associated with internal-wave-induced perturbations, the reso-
nance overlapping causes stochastic instability of ray paths. The influence of the form of the smooth unper-
turbed sound speed profile on ray sensitivity to the perturbation is studied. Stability analysis has been con-
ducted by constructing the Poincare´ maps and examining depth differences of ray trajectories with close
take-off angles. The properties of ray travel times, including fractal properties of the time front fine structures,
under condition of ray chaos have been investigated. It has been shown that the coexistence of chaotic and
regular rays, typical for dynamical chaos, leads to the appearance of gaps in ray travel time distributions, which
are absent in unperturbed waveguides. This phenomenon has a prototype in theory of dynamical chaos called
the stochastic particle acceleration. It has been shown that mesoscale inhomogeneities with greater spatial
scales than that of internal waves, create irregular local waveguide channels in the vicinity of the axis~i.e.,
sound speed minimum! of the unperturbed waveguide. Near-axial rays propagating at small grazing angles,
‘‘jump’’ irregularly between these microchannels. This mechanism determines chaotic behavior of the near-
axial rays.
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I. INTRODUCTION

In the past decade it has been realized that the phen
enon of ray chaos plays a significant role in long range so
propagation in deep sea@1–9#. Numerical simulations have
demonstrated that under typical conditions of deep sea
trajectories are highly unstable and exhibit extreme sens
ity to starting parameters. Initially close rays diverge exp
nentially with range and numerical estimations of inve
Lyapunov exponents—main quantitative characteristics
this divergence—are usually of order of a few hundreds
lometers@6–8#. On the other hand, solving of underwat
acoustics inverse problems aimed at monitoring of la
scale features of the ocean temperature field, implies ca
ing out acoustic measurements at acoustic paths of thous
kilometer long @10–13#. It is quite clear that at so long
ranges chaotic properties of the ray structure can not be
nored.

The chaotic ray motion in underwater acous
waveguides is analogous to chaotic dynamics of nonin
grable Hamiltonian systems in classical mechanics. The m
goal of this paper is to demonstrate that the methods de
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oped in the theory of dynamical chaos, being applied
problems of long range sound propagation in the ocean, g
insight into basic mechanisms determining ray struct
range variations. We discuss how phenomena known in
theory of dynamical chaos, can manifest themselves in
derwater acoustics.

In many studies on ray chaos in acoustic waveguid
attention is confined to environmental models with perio
range dependence@1–5#. The reason is partly that propertie
of chaotic ray dynamics in such waveguides are identical~at
least, formally! to extensively studied properties of chaot
dynamics of a nonlinear oscillator driven by an external p
riodic force @1,2#. Further, periodic models are not so arti
cial as they may look at first glance: a rather realistic en
ronment can be synthesized out of comparatively sm
number of periodic terms. For example, in Ref.@8# it has
been demonstrated that predictions made in the scope
ten-terms model can be in reasonable agreement with ex
mental data.

The objective of the present paper is to show how so
known properties of Hamiltonian chaotic dynamics reve
themselves in periodic environmental models of underwa
acoustics. We focus here on two issues. One of them is a
of the ray-medium resonance phenomenon as an impo
factor of stochastic ray instability. We consider a model w
a smooth range-independent background sound-speed p
©2001 The American Physical Society21-1
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and weak inhomogeneities induced by two periodic intern
wave modes. With this example we discuss the role of r
medium resonances in the emergence of ray chaos. Ana
cal estimations supported by numerical simulation show
for realistic values of spatial periods and sound-speed fl
tuation amplitudes associated with this perturbation, over
ping of resonances is possible. According to the Chiriko
heuristic criterion, this overlapping gives rise to strong r
chaos@14–16#. It is clear that the overlapping condition de
pends on the parameters of both, unperturbed profile
perturbation. We argue that studying of ray-medium re
nances gives insight into strong dependence of global
sensitivity on a background sound-speed profile dem
strated in Ref.@8#.

Much of the present paper is concerned with investigat
of ray travel times. This is the second important issue
dressed here. So far, the ray travel time has been the m
signal parameter in the underwater acoustics experim
from which inversions have been performed to reconstr
ocean temperature field@10,11#. That is why chaotic proper
ties of this signal characteristic are of considerable inter
On the other hand, from the viewpoint of opticomechani
analogy, the ray travel time is an analog to mechanical
tion, i.e., of such a characteristic of dynamical systems
is, typically, not measured experimentally and for this rea
has not received much attention in studies on dynam
chaos. Using numerical simulation we study how chaotic
havior of ray trajectories manifests itself in the travel tim
dependence on the starting momentum and in the so-ca
time front representing ray arrivals in depth-time plane.

The most part of this paper is devoted to studying
environmental models describing the influence of inter
waves on sound transmission. The point is that the inte
waves are considered as a main factor responsible for e
gence of ray chaos at long range wave propagation. At
end of the paper we shortly discuss the role of the so-ca
mesoscale inhomogeneities whose spatial and temp
scales are considerably greater than that of internal wa
We argue that the mesoscale inhomogeneities cause ch
behavior of near-axial rays and the mechanism determin
this chaotic dynamics has some specific features that di
entiate it from the mechanisms defining ray chaos due
internal waves.

In studying ray dynamics we shall neglect the horizon
refraction. This assumption is widely used in underwa
acoustics because the cross-range gradients of the s
speed are typically two orders of magnitude smaller than
vertical gradients. That is why the sound propagation is w
described as two dimensional~having no out-of-plane scat
tering! @8,17#.

The paper is organized as follows. In Sec. II we give
brief description of the nonlinear ray-medium resonance
discuss the role of resonance overlapping in the emerge
of ray chaos. The perturbation theory of resonances, inc
ing Chirikov’s heuristic criterion of chaos emergence due
the resonance overlapping, is presented in Sec. II A. T
theory is formulated using the Hamiltonian formalism
terms of the action-angle canonical variables. In Sec. II B
general relations are applied to study stochastic ray insta
03622
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ity and its dependence on parameters of the perturbation
that of the smooth background profile. This is done using
simulation in an underwater acoustic waveguide with ran
dependent perturbations due to two internal-wave mod
Stability analysis is conducted by constructing the Poinc´
maps and examining depth differences of ray trajecto
with close take-off angles. It is investigated numerically ho
the phenomenon of resonance overlapping affects ray
namics in realistic environmental models considered in t
section.

The emphasis in Sec. III is on properties of ray trav
times under conditions of ray chaos. We study how the
existence of regular and chaotic rays manifests itself in
structure of ray arrivals. The phenomenon of stickiness
stroying the uniformity of the motion of chaotic rays, and t
concept of ‘‘chaotic wave transmission’’ introduced in Re
@18# are shortly discussed. By numerical simulation we sh
that the presence of a sharp boundary between region
phase plane occupied by these two types of rays, lea
appearance of the gap in the distribution of ray travel tim
In this section we also investigate diffusion of the action a
fractal properties of travel times of chaotic rays.

In Sec. IV we show that the phenomenon of chaotic p
ticle acceleration known in the theory of dynamical cha
@15#, has an analog in ray dynamics. The presence of the
in the ray travel time distribution is interpreted from th
viewpoint of this mechanism. In this section we discuss h
chaotic ray motion reveals itself in different features of t
time front.

In Sec. V we examine the ray structure in the presence
mesoscale perturbations. Here we use an environme
model constructed on the basis of real hydrographic data
is demonstrated numerically that mesoscale inhomogene
give rise to chaotic motion of near-axial rays and the ba
mechanism determining the stochastic instability of the
rays is identified.

In Sec. VI the results of this work are summarized.

II. RAY-MEDIUM NONLINEAR RESONANCE

A. Perturbation theory for the resonances

In this section the Hamiltonian formalism used for ra
dynamics analysis is briefly discussed and short descrip
of ray-medium resonance phenomenon in terms of act
angle canonical variables is provided using this, actua
known, formalism@1,2#. As it has been indicated already, th
smallness of cross-range gradients of the sound speed a
one to neglect the horizontal refraction and describe
sound propagation as two dimensional.

1. Basic equations for ray dynamics

Consider a two-dimensional underwater acoustic wa
guide with the sound speedc being the function of depthz
and ranger. The z axis is directed downward. The ray tra
jectory obeys the Hamilton equations

dz

dr
5

]H

]p
,

dp

dr
52

]H

]z
, ~1!
1-2
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with the Hamiltonian

H52An2~r ,z!2p2. ~2!

Here n(r ,z)5c0 /c(r ,z) is the refractive index,c0 is some
reference sound-speed value, and the variablep presents an
analog to the mechanical momentum. The HamiltonianH
and momentump are connected to the current ray grazi
anglea by

H52n cosa, p5n sina. ~3!

The ray travel timet is an analog to mechanical actio
and is given by the integral

t5
1

c0
E ~pdz2Hdr !. ~4!

In many problems of underwater acoustics the sou
speed fieldc(r ,z) can be modeled as a superposition o
smooth range-independent background sound-speed p
c̄(z) and a weak range-dependent perturbationdc(r ,z):

c~r ,z!5 c̄~z!1dc~r ,z!. ~5!

In environmental models used in underwater acoustics@17#
the condition

udcu!Dc!c0 ~6!

is typically met, whereDc is the maximum variation ofc̄,
and the constantc0 is chosen to be the minimum value o
c̄(z). Then the Hamiltonian can be approximately rewritt
in the form

H5H̄1V, ~7!

where

H̄52An̄22p2, n̄~z!5
c0

c̄~z!
,

V~r ,z!5
dc~r ,z!

c0
. ~8!

In real deep ocean acoustic waveguides only those rays
propagate at grazing angles smaller than 10° –15° surviv
long ranges~steeper rays interact with a lossy bottom!. We
shall consider here only such rays. Their momenta satisfy
condition

p!uHu;1. ~9!

In the range-independent waveguide (V50) with the
HamiltonianH̄, the conservation lawH̄5E holds true along
the ray trajectory with the constantE being an analog to the
mechanical energy. The explicit expression for the mom

tum p as a function ofE and z is p(E,z)56An̄2(z)2E2.
All the trajectories forV50 are periodic curves. The coo
dinates of their upper and lower turning points (zmax and
03622
d

file
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zmin , respectively! are functions of the ‘‘energy,’’E, and de-
termined by the equationn̄(z)52E.

An important characteristics of ray trajectories that
widely used in both classical mechanics and ray theory, is
so-called action variableI related toE by @19#

I 5
1

2p R dz p~E,z!5
1

pEzmin

zmax
dzAn̄22E2, ~10!

where the integration goes over the period of the ray tra
tory. Equation~10! defines the functionE(I ). Now the turn-
ing point coordinates,zmin andzmax, can also be regarded a
functions ofI.

The canonical transformation from (p,z) variables to the
action-angle variables (I ,u) is given by the pair of equation
@19#

p5
]G~z,I !

]z
, u5

]G~z,I !

]I
, ~11!

with the generating function

G~z,I !5E
zmin

z

dzAn̄2~z!2E2. ~12!

Note, thatp and z are periodic functions of the angl
variableu, i.e., p(I ,u)5p(I ,u12p), z(I ,u)5z(I ,u12p).

2. Resonances

In the range-dependent environment (VÞ0) we define the
action-angle variables using the same relations@given in Eqs.
~11! and~12!# as in the unperturbed waveguide. The Ham
tonian equations in the new variables take the form@1#

dI

dr
52

]V

]u
,

du

dr
5v~ I !1

]V

]I
, ~13!

where

v~ I !5dH̄~ I !/dI ~14!

is the spatial frequency of the trajectory oscillations in t
unperturbed waveguide.

Now let us turn our attention to an environmental mod
with periodic range dependence. In this case the perturba
V„r ,z(I ,u)… is periodic inr andu and it can be represente
in the form of the Fourier series

V5
1

2 (
m,q

Vm,q~ I !ei (mu2qV0r )1c.c., ~15!

where the symbol c.c. denotes complex conjugation.
A group of ray trajectories are captured in a ray-mediu

resonance if their action variables are close toI 0 satisfying
the condition

m v~ I 0!5qV0 , ~16!

with m andq being two integers. The ray trajectory trappe
into the resonance can be analytically described usin
1-3
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simple perturbation theory~see, for example, Refs.@1,2#!.
Here we shall use only one result of this analysis, namely
estimation of the resonance width.

It can be shown that action variables of the trapped r
belong to the intervalI 0–DI max,I,I01DImax, where

DI max52AV0 /uv8u ~17!

with V0 being the amplitude of the resonant term in su
~15!. Equation~17! defines a half-width of the resonance
terms of action. Each trapped ray oscillates with some spa
frequency. The width of the resonance in terms of spa
frequency can be approximately estimated as

Dv5uv8uDI max52AV0uv8u. ~18!

Estimations~17! and~18! are made for each individual reso
nance ignoring all the other resonances. That is why t
have a good sense only when perturbation is small eno
i.e.,

«5
V0

uH~ I 0!2H~0!u
!1. ~19!

In the denominator we subtract the constituent of the Ham
tonian independent ofI, which may be arbitrary large o
small depending on a choice of the reference sound speec0.
The applicability conditions of this approach are discusse
Refs.@1,2#. Here we will only note that the main condition

«!a!
1

«
, ~20!

where

a5Udv~ I 0!

dI U I 0

v~ I 0!
~21!

is a parameter characterizing the degree of nonlinearity.

3. Degree of nonlinearity in a typical model of underwater
acoustic waveguide

Consider the so-called canonical sound-speed profile
the Munk profile, widely used in underwater acoustics
model wave transmission through a deep ocean@17#:

c̄~z!5c0@11«~e2h1h21!#,

h52~z2za!/B, ~22!

where c051.49 km/s, za51 km is the sound-speed ax
~depth corresponding to the minimum of sound speed!, «
50.0057, andB51 km. This profile is shown by a dashe
line in the left panel of Fig. 1~other curves presented in th
figure will be discussed later!. In what follows this profile
will be used in our numerical simulations. Now, with th
example, we want to demonstrate dependencies ofv and
dv/dI on the action variable which are typical for ocea
acoustic propagation models.

In Figs. 2~a! and 2~b! this is done for a waveguide with
03622
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sound-speed profile~22! under assumption that the bottom
located at 6 km depth. Note, that the interval of actionsI,
from 0 to about 0.2 km corresponds to ray trajectories tha
not strike the surface or the bottom~the bottom is located a
6 km depth!. The interval from 0.2 to 0.43 km correspond
surface-bounce rays, but these ray do not strike the bott
Larger values ofI correspond to rays reflecting off both su
face and bottom. These three intervals are echoed inv de-
pendence onI presented in Fig. 2~a! and they are much more
apparent in Fig. 2~b! where the dependence ofdv/dI on I is
shown.

Let us stress that for purely refracted rays, propagat
without interaction with both surface and bottom, the angu
frequencyv decreases withI. This property is typical of

FIG. 1. Sound-speed profiles~left panel! and cycle lengths
against launch angles for rays starting from the waveguide
~right panel!. Dashed line – profile 1, solid line – profile 2.

FIG. 2. Angular frequencyv of ray oscillations~a! and its de-
rivative with respect to the action variableI ~b! as functions ofI.
The nonlinearity parametera againstI ~c! and a closer view of this
dependence for rays propagating without reflection off the bott
~d!.
1-4
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sound-speed profiles in deep sea. It can also be formulate
a slightly other form: the cycle length in underwater acous
waveguide usually increases with the grazing angle at wh
the ray crosses the sound-speed axis~see the dashed line i
the left panel of Fig. 1!.

Figures 2~c! and 2~d! show the parametera, degree of
nonlinearity defined in Eq.~21!, as a function of the actionI.
Figure 2~c! shows this parameter for all three types of ra
considered above. Figure 2~d! presents a portion of the abov
curve corresponding to rays propagating without reflect
off the bottom.

4. Overlapping of resonances

If there exist several resonances centered at different
tial frequencies~at different values ofI 0) properties of ray
motion considerably depend on whether these resona
overlap or not. Chaotic rays exist in any case. But in the c
of isolated resonances they typically form the so-called s
chastic layers in the neighborhood of separatrices divid
the areas in the phase space occupied by trapped and
trapped rays@2#. The action variables of rays belonging
such layers are close toI 06DI max, i.e., to borders of the
interval determined by Eq.~17!. Since the stochastic layer
usually occupy only a small fraction of the phase space
situation is called the weak chaos.

Overlapping of resonances gives rise to much more p
nounced chaotic ray motion. Consider two resonances
tered at actionsI 1 andI 2. The corresponding spatial freque
cies arev15v(I 1) and v25v(I 2). The widths of these
resonances in terms of action~spatial frequency!, estimated
by applying Eq.~17! @Eq. ~18!#, we denote byDI 1 andDI 2
(Dv1 and Dv2). If the total width of both resonancesDI
5(DI 11DI 2) is less than the difference between the cent
of the resonancesdI 5uI 22I 1u, then the resonances are is
lated. Otherwise, the resonances overlap that leads to
interaction giving rise to chaotic motion. According to th
heuristic Chirikov’s criterion, the system exhibits stron
chaos if the condition

DI

dI
.Q ~23!

is met@14–16#. HereQ is a constant close to unity. In term
of spatial frequencies, this criterion takes the form

Dv

dv
.Q, ~24!

wheredv5uv22v1u andDv5(Dv11Dv2).
The overlap of resonances begins when their separat

touch each other. Neglecting the deformation of the sep
trix due to the presence of the neighboring resonance yi
the simplest form of the Chirikov’s criterion withQ51. This
gives an order-of-magnitude estimate of a perturbat
strength at which rays begin to exhibit the strong chao
motion. In order to obtain a more accurate result one sho
take into account a finite width of the stochastic layer s
rounding the separatrix as well as the influence of high-or
resonances that are not explicitly present in the Hamilton
03622
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H̄(I )1V(I ,u,r ) with V defined by Eq.~15!, and which arise
in higher-order approximations of the perturbation theory
detailed analysis of these factors~see Refs.@14,16#! leads to
more precise estimates of the constantQ. In particular, for
the so-called standard map it has been found thatQ.2/p
.0.64. It is believed that the valueQ52/p is rather univer-
sal although there is no rigorous proof of that.

Let us emphasize an important point. Chirikov’s criter
~23! and ~24! not only indicate the fact of the emergence
strong chaos. They also give simple, albeit rough, quant
tive estimations characterizing a region of phase plane oc
pied by chaotic rays. The quantitiesDI andDv provide es-
timations of intervals of actions and spatial frequenci
respectively, corresponding to chaotic ray paths.

B. Ray chaos simulation

There exists a ‘‘regular’’ way to describe or identify ch
otic dynamics using phase space portrait, Poincare´ map,
Lyapunov exponent, etc. Although all of them can not
used in a straightforward way for the underwater acous
diagnostics. The reason is evident since one cannot track
at ranges of thousands kilometers. Temporal evolution of
arriving wave fronts and intensities of signals at differe
depths at some fixed ranges are the main diagnostic en
used in the contemporary experiments. In this section
start to study how chaotic motion reveals itself in ray stru
ture characteristics at a given range.

1. Environmental models

In this section effects related to resonance overlapp
will be investigated numerically using idealized models
underwater long-range sound propagation.

Two background sound-speed profilesc̄(z) shown in the
left panel of Fig. 1 and hereafter referred to as profile 1 a
profile 2, will be considered. As it has been indicated alrea
profile 1 is the so-called canonical Munk profile defined
Eq. ~22!. Although both profiles look similar, rays propaga
ing in the corresponding waveguides without surface a
bottom interactions have significantly different intervals
cycle lengths as it is seen in the right panel of Fig. 1. W
this example we shall demonstrate that this difference
result in different stochastic instabilities of ray trajectori
with respect to a weak range-dependent perturbation.

We consider a sound-speed perturbation in the form

dc~r ,z!5e23z/2B(
j 51

J

Aj sin~ j pe2z/B!cos~kj r 1l j !,

~25!

where each term on the right accounts for a contribut
from an internal-wave mode with the horizontal wave nu
ber kj , Aj , andl j are random amplitudes and phases,
spectively,B is the same constant as in Eq.~22!. Similar
models ofdc(r ,z) have been used in Ref.@8# where it has
been demonstrated numerically that predictions made w
the model includingJ510 modes closely resemble resu
observed in field experiments. The model withJ51 in
1-5
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which the Munk profile is perturbed by a single-mode int
nal wave has been used in Ref.@9#. In this Section we use
model~25! with J52 which is convenient for demonstratio
of the resonance overlapping phenomenon and its role in
emergence of ray chaos.

The two following sets of amplitudes,A1 and A2, have
been selected.Model 1. A152.47531024 km/s, A254.95
31024 km/s. Model 2. A158.2531024 km/s, A2516
31024 km/s.

In model 2 the amplitudes are greater by a factor 3.3.
other parameters are the same for both models:l j ’s are some
phases, the spatial periods of the perturbation areL1
52p/k1538.16 km andL252p/k2515.9 km. It should
be emphasized that both periods are integer multiples oL
5190.8 km, i.e., the perturbation is periodic. Surface
trapolated amplitudes of sound-speed fluctuations with ra
are:dcmax;0.3 m/s in model 1 anddcmax;1 m/s in model
2. These values are typical for real underwater wavegu
@8,17#.

2. Manifestation of resonance overlapping
in phase portraits of rays

If the above perturbations are imposed over a ran
independent profile, rays with cycle lengths close to inte
multiples ofL1 or L2 will be captured in resonances. In th
right panel of Fig. 1 the cycle length dependencies on lau
angle are shown for profiles 1 and 2. Throughout this pa
only rays starting from the waveguide axes, i.e., from dep
corresponding to minima of sound speed, are considered
restrict our attention to not very large launch angles. In p
ticular in this section they are taken from the angular inter
(212°,12°). In most real oceanic waveguides such rays p
the main role in long-range sound propagation@20#. Steeper
rays strike the lossy bottom and substantially attenuate o
long propagation distances.

It is easily seen that there will be only one resonance
the waveguide with profile 1, because the corresponding
terval of cycle lengths~from 42 to 56 km! contains only one
integer multiples of periods of perturbation, namely, 3L2. So
in this case there is no resonance overlapping.

Profile 2 determines cycle lengths spanning the inter
from 25 to 50 km. In this case there will be three resonan
centered at rays with the cycle lengthsL1
538.16 km, 2L2531.8 km, and 3L2547.7 km. Equation
~18! provides estimations of widths of these resonances
then the Chirikov’s criterion~24! can be applied to investi
gate their overlapping. This yields that the resonance c
tered at a spatial frequency 2p/47.7 km21 remains isolated
for both models of the perturbation. The other two res
nances overlap. In model 1 we have transition from nonov
lapping to overlapping: the ratios on the right of Eqs.~23!
and~24! are slightly less than unity. The Chirikov’s criterio
is not met forQ51 but it is met for the more realistic valu
Q52/p. In this model we can expect a chaotic behavior
rays with launch angles close to 7°. Trajectories of such r
in phase space lie in the area where the resonances ove
In model 2 the overlapping is stronger and an interval
launch angles corresponding to rays involved in the cha
motion is significantly larger than in model 1. Estimations
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this interval made withQ51 andQ52/p are of the same
order. On the basis of these estimations we expect that
with launch angles from the interval of about 5° to 8° shou
exhibit the stochastic instability.

The chaotic ray behavior can be visualized by the Po
carémap @1–5#

~pn11 ,zn11!5T̂~pn ,zn!, ~26!

where a symbolT̂ denotes transformation of the momentu
and coordinate of a ray trajectory taken at a rangenL to that
at a range (n11)L. Figure 3 presents a set of phase portra
plotted using the Poincare´ map. The left panel corresponds
background profile 2 with parameters of perturbation
model 1. This is a set of dots depicting points (pn ,zn) cal-
culated for 12 rays starting from the depth of 0.94 k
~sound-channel axis! at grazing angle 1°,2°,. . . ,12°. Con-
sistent with our expectation, only the ray starting at the an
of 7° exhibits chaotic behavior and produces a thin stoch
tic layer.

A similar phase portrait for model 2 of perturbation
given in the central panel of Fig. 3. It is clearly seen that
overlapping of resonances gives rise to a significantly str
ger chaos. The rays, started at angles of 5°, 6°, 7°, and
belong to the interval covered by overlapping resonanc
demonstrate chaotic behavior, and produce a wider stoch
layer compared to that in the left panel. This also agrees w
our prediction made on the basis of Eq.~23!.

To demonstrate the role of the background profile we c
sider the same perturbation~model 2! superimposed ove
profile 1. The phase portrait of the corresponding wavegu
is shown in the right panel of Fig. 3. Again 12 rays have be
used with take-off angles spaced uniformly from 1° to 12
This time the starting depth of 1 km~the sound-channel axi
for profile 1! has been selected. It is seen that only one
out of 12 exhibits chaotic behavior. Its launch angle 7° c
responds to a cycle length in the unperturbed wavegu

FIG. 3. Left panel: Phase portrait for a waveguide with bac
ground profile 2 and model 1 of perturbation. Middle panel: as
the left panel but for model 2 of perturbation. Right panel: as in
middle panel but for background profile 1~Munk profile!.
1-6
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THEORY AND APPLICATIONS OF RAY CHAOS TO . . . PHYSICAL REVIEW E64 036221
close to 3L2, i.e., the stochastic layer in the right panel
Fig. 3 is associated with the presence of a single isola
resonance in this propagation model. As it has been indic
in Sec. II A 4, a thin stochastic layer always exists near se
ratix of even an isolated resonance.

Comparison of the left and central panels in Fig. 3 sho
a quite natural property of ray chaos: the stronger is per
bation, the larger portion of phase space is filled with chao
rays.

Comparison of the central and right panels demonstr
another feature of chaotic ray dynamics that is less expec
the same perturbation superimposed on seemingly c
background profiles gives rise to a strong chaos in one c
and a much weaker chaos in another. This phenomenon
first noticed in Ref.@8#. Later on, we interpret it from the
viewpoint of resonance overlapping.

3. Stochastic ray instability

The most direct demonstration of stochastic ray motion
model 2~with the background profile 2! is presented in Fig.
4. Here range dependencies of separations in depth and
mentum for two rays starting from the sound-channel a
with slightly different initial momenta are shown. It is see
that both differences, in depth,dz5uz22z1u, and in momen-
tum, dp5up22p1u, for the two rays grow, on average, e
ponentially with range:

udzu;elr , udpu;elr , ~27!

wherel is the so-called Lyapunov exponent@1#. In the ex-
ample shown in Fig. 4l51/200 km21.

A typical feature of chaotic ray dynamics leading to no
uniformity of the phase space is different sensitivity of tr
jectories to initial conditions. A convenient tool for identify
ing regions of ray instability has been used in Ref.@8#.
Following this paper we consider the depth difference of
pair of rays whose starting momenta differ only infinite
mally. In other words, we study

dz~r !5Lzp~r !dp~0!, ~28!

where

FIG. 4. Differences in depth~upper panel! and momentum
~lower panel! versus range for a pair of ray trajectories starting fro
the point source with close launch angles.
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]p~0!
U ~29!

is one of the main characteristics of local properties of d
namical chaos, anddp(0) is an infinitesimal difference in
momenta of rays starting from the same point. In our sim
lation dp(0)51027.

Figure 5 shows the absolute difference,udzu5uz12z2u, in
arrival depths,z1 andz2, of two rays with starting momenta
that differ bydp0 as a function of launch angle at 1000 k
range. The calculations have been carried out for the ba
ground profile 2. Our objective here is to get some quant
tive information on stochastic instability of ray trajectorie
that reveals itself in appearance of randomly scattered po
in the left and central panels of Fig. 3.

The plots demonstrate the intermittent character of zo
of high sensitivity. Rays with launch angles between25°
and 5° are much less sensitive to inhomogeneities t
steeper rays. This fact as well as considerable increase in
sensitivity to initial conditions in the region of resonan
overlapping in model 2, is consistent with the results p
sented in Fig. 3.

A new property of ray sensitivity dependence on init
conditions, that could not be seen in Fig. 3, is now clea
visible in Fig. 5 ~especially in the lower panel!. Inside re-
gions of ray instability there are small angular intervals w
rather smooth dependence of depth differences on lau
angle. This fact suggests that chaotic rays are interspe
with regular ones. In particular, it means that inside stoch
tic layers observed in Fig. 3 there are numerous ‘‘stable
lands’’ located in blank spots between the presented poi
This situation is general for dynamical chaos@1–5# and it
will be discussed more in Sec. III B.

4. Sensitivity of ray travel times

It is natural to expect that stochastic behavior affects a
characteristic of ray trajectory. Figure 6 illustrates this sta
ment for ray travel times. This arrival time dependence
launch angle has been computed for 1000 km propaga

FIG. 5. Depth differences at 1000 km range for pairs of ra
with infinitesimally close starting momenta. Each point represe
for a given launch angle the absolute difference in arrival depth
two rays: a ray with original momentum and one with a sligh
perturbed momentum~which is the original plus 1027). To con-
struct this plot 4096 pairs of rays were used.
1-7
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through an ocean-acoustic waveguide modeled by the b
ground profile 2 without~upper panel! and with ~lower
panel! the model 2 of perturbation~25!. 8192 ray trajectories
with uniformly incremented starting momenta were eva
ated. In accordance with results presented in the mid
panel of Fig. 3 and in the lower panel of Fig. 5 most affec
are rays with launch angles,ua0u, from about 5° to 8°, i.e.,
from the angular interval containing most part of chao
rays. Note that besides randomly scattered points belon
to this interval there are groups of points forming segme
of regular curves. This is another manifestation of coex
ence of regular and chaotic rays with close initial conditio
~see the above comment to Fig. 5!.

Figure 7 shows the so-called time front, i.e., a plot rep
senting ray depths against arrival times at the given rang
has been computed for the same set of rays presented in
6 and every point in the plot represents one ray arrival. F
ure 7 illustrates how the chaotic ray motion affects the str
ture of ray travel times. The chaotic rays with launch ang
5°,ua0u,8° have travel times of about 672 s to 673
Comparison of plots in the upper and lower panels of Fig
shows that only segments of the time front corresponding
this interval, i.e., formed by chaotic rays, are significan

FIG. 6. Ray travel time versus launch angle.

FIG. 7. Time fronts for a waveguide without~upper panel! and
with ~lower panel! model 2 of perturbations. Background profile
was used.
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distorted in the presence of perturbation.
Stochastic properties of ray travel times will be inves

gated in more detail in the following section for anoth
model revealing a more strong ray chaos.

5. Ray sensitivity to the background profile

Numerical results presented in this section shows that
phenomenon of ray-medium resonance should play a sig
cant role in underwater acoustic waveguides. In particu
considering of this phenomenon may shed an additional l
on the effect noticed in Ref.@8#. In that paper it has been
demonstrated numerically that the same weak ran
dependent inhomogeneities placed in waveguides with
ferent background sound-speed profiles lead to different c
otic properties of ray structure. The authors argue that
curvature at the sound-channel axis strongly influences
character of the ray behavior: the stronger the curvature
more chaotic ray motion is. This statement agrees with
results presented above. Our background profile 2 ha
greater curvature than profile 1, and comparison of the ph
portraits in the central and right panels of Figs. 3 shows t
in the waveguide with profile 2 ray chaos is stronger. To g
some explanation to a similar effect, the authors of Ref.@8#
refer to results of Duda and Bowlin@21# who argue that a
normalized sound-speed curvature strongly controls cau
formation.

Bearing in mind the role of ray-medium resonance
emergence of chaos, we can interpret this in a follow
viewpoint. Note, that a large curvature corresponds to
strong dependence of the trajectory cycle length on
launch angle. For example, compare the two curves show
the right panel of Fig. 1. The cycle lengths corresponding
profile 2 ~large curvature! span the interval of almost twice
the size of that corresponding to profile 1~small curvature!.
Correspondingly, the interval of spatial frequenciesv for
profile 2 is also two times wider compared to profile 1. In t
limiting case of a profile with an infinite curvature~e.g., a
bilinear sound-speed profile!, the interval of spatial frequen
cies becomes infinite because in this case the interva
cycle lengths begins from zero@22#.

On the other hand, it is clear that the larger is an inter
of cycle lengths, more are chances for ray trajectories to
in resonance with some harmonics of the perturbation a
hence, more chances exist for resonance overlapping
giving rise to strong ray chaos.

III. TRAVEL TIME OF CHAOTIC AND REGULAR RAYS

A. Description of the model

Our primary concern in this section is with chaotic pro
erties of ray travel times. In many schemes of acoustic mo
toring of ocean structure these parameters are main obs
ables used for solving inverse problems@10#.

Following Refs.@5,18# we consider here wave propag
tion in the canonical Munk waveguide~profile 1 in Fig. 1!
given by Eq.~22! with a perturbation

dc~r ,z!52gc0z/Be22z/B cos~2pr /l!, ~30!
1-8
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THEORY AND APPLICATIONS OF RAY CHAOS TO . . . PHYSICAL REVIEW E64 036221
whereg50.01 and the spatial periodl510 km. The ampli-
tude ofdc takes its maximum value of about 5 m/s at 500
depth. Note that this perturbation is significantly strong
compared to models considered in the preceding section
chaotic properties of ray travel times that we are going
discuss are here more pronounced.

1. Phase portrait
A phase portrait of ray motion for the model defined

Eqs.~22! and~30! is shown in Fig. 8~a!. Here we have used
Poincare´ map~26! with sections spaced apart byl. Although
the perturbation is now stronger, coexistence of regular
chaotic trajectories persists. This fundamental property
Hamiltonian dynamics follows from the Kolmogorov
Arnold-Moser theory@16# and does not depend on how sm
or strong the perturbation is. However, the portion of t
phase space occupied by regular trajectories usually
creases with the magnitude of perturbation. Comparison
phase portraits presented in Figs. 3 and 8~a! illustrates this
statement.

The phase portrait in Fig. 8~a! presents a familiar picture
of ‘‘stable islands’’ filled with regular curves in the ‘‘chaoti
sea’’ filled with randomly scattered points. The largest isla
in the center of Fig. 8~a! is formed by rays propagating a
small grazing angles. These rays are regular and it is na
to expect that their contributions should form a regular p
of the time front. Numerical results presented below are c
sistent with this expectation.

An important feature of chaotic behavior of the ray tr
jectory in the chaotic sea is the so-called stickiness, i.e.,
presence of such parts in a chaotic trajectory where the la
exhibits an almost regular behavior. This occurs when a
wandering in the phase space the trajectory approach
stable island and ‘‘sticks’’ to its border for some time th
may be fairly long@23#. This phenomenon reveals itself i
Fig. 8~b! where the Poincare´ map~26! of a single ray starting
from 1 km depth with an initial momentump0
520.137 893. The density of points depicting the trajecto
is most high in the vicinity of five islands~surrounding the
large island in the center! that we have already seen in Fi
8~a!. It means that this particular trajectory sticks to the
islands.

2. Chaotic sea as a result of resonance overlapping

This phase portrait can be interpreted from the viewpo
of resonance overlapping discussed in Sec. II. Equation~16!
defining resonant values of the action for model~30! trans-
lates to

m v~ I !52p/l. ~31!

The functionv(I ) for the Munk profile is shown in Fig. 2~a!.
Ray trajectories~on the phase plane! in the unperturbed
waveguide corresponding to the resonant values ofI are
shown in Fig. 8~c! by thick-solid lines. They are superim
posed on the Poincare´ map, the same as in Fig. 8~a!. The
trajectories with larger values ofI embrace trajectories
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FIG. 8. Poincare´ maps of rays in the waveguide with the Mun
profile and the perturbation given in Eq.~30!. ~a! Phase portrait of a
field excited by a point source set at 1 km depth.~b! Phase portrait
of a single ray starting at 1 km depth with the momentump0

520.137 892. ~c! Resonant ray trajectories in the unperturb
waveguide superimposed on the phase portrait constructed fo
perturbed waveguide~the same map as in upper panel!. Trajectories
corresponding to larger values of action embrace that correspon
to smaller values of action.
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I. P. SMIRNOV, A. L. VIROVLYANSKY, AND G. M. ZASLAVSKY PHYSICAL REVIEW E 64 036221
corresponding to smaller values. The resonant valuesI
have been found by solving Eq.~31! as it is illustrated in Fig.
9. The straight horizontal line in Fig. 9 indicates the angu
frequency of the perturbation~30!, 2p/l. Intersections of
this line with other curves depicting the functionsmv(I ) for
different integerm, occur at resonant values of the actionI
satisfying condition~31!.

To make some conclusion on resonance overlapping
have estimated resonance widths in terms of action using
~17!. This estimation shows that the large chaotic area in
Poincare´ map is a result of overlapping of the first two res
nances corresponding to two innermost solid curves in F
8~c!. All the other resonances do not overlap. However
should be mentioned that the perturbation theory descr
in Sec. II A 3 is here of limited use. The point is that th
parameter« defined in Eq.~19! for perturbation~31! is about
0.1. For I ,0.45 km this value is not small compared toa
@see Figs. 2~c! and 2~d!# as it is required by the left inequalit
in Eq. ~20!. This inequality completely fails nearI
50.2 km wherea vanishes. Nevertheless, we see that
overlapping criterion~24! gives a reasonable prediction o
the area of the phase plane occupied by chaotic sea.

3. Diffusion of action

The Poincare´ map presented in Fig. 8~a! shows that rays
starting from a point source located at 1 km depth with st
ing momenta from the interval 0.13,up0u,0.28 should be
predominantly chaotic and wander inside the chaotic la

FIG. 9. Dependencies ofmv(I ) on the action variableI for the
unperturbed Munk profile (m51,2 . . . ,7).
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i.e., within the area in Fig. 8~a! formed by randomly scat-
tered points. Here we are studying stochastic range variat
of action variables of these rays. The limiting values of a
tions corresponding to boundaries of the chaotic layer can
approximately estimated asI min50.06 km and I max
50.35 km.

Figure 10~a! presents the difference in action variabl
against range for two trajectories starting from 1 km de
with the slightly different initial momenta:p050.19 andp0
50.190 01. It is clearly seen that up to 1000 km range
difference grows, on average, exponentially and the inve
Lyapunov exponentl215120 km. Beyond 1000 km rang
the difference becomes of order ofI max2Imin and then it
saturates.

In Fig. 10~b! range dependencies of actions for 500 ra
starting at 1 km depth with initial momenta spaced uniform
within the interval from 0.2 to 0.205 are shown. It is clear
seen how this bunch of trajectories is widening with ran
until, at about 700 km, it fills the whole space betweenI min
and I max. At longer ranges the width of the bunch remai
constant, approximately equal toI max2Imin . Figure 10~b!
gives a visual representation of diffusion of action.

B. Chaotic wave transmission

Finiteness of the waveguide length leads to the prob
called in Ref.@18# the problem of ‘‘chaotic transmission.
The origin of this phenomenon lies in nonuniformity of th
phase space. The latter is not ergodic and different rays h
different fractal properties depending on propagation ran

The Poincare´ map constructed by means of ray traject
ries evaluation at very long ranges, allows one to underst
which parts of the phase space are filled with regular
chaotic rays. But ranges of real interests for underwa
acoustic are not very large. Acoustic paths lengths in exp
ments on long-range sound propagation vary from a f
hundreds to a few thousands kilometer@10,12#. A typical
cycle length of ray trajectory oscillations is of order of a fe
dozens kilometer@20,22#. It means that the number of osci
lations seldom exceeds 150–200 and in many experimen
only of order of ten. Therefore some trajectories with start
parameters belonging to the ‘‘chaotic sea’’ have no chanc
exhibit chaotic behavior at real acoustic paths.

This point is illustrated in Fig. 11 where the ray trav
time is plotted against the starting momentum at ranges
1500, 3000, and 5000 km. Three successive magnificat
d

FIG. 10. Diffusion of actions
in the perturbed Munk profile.~a!
Difference in action variables,I 1

andI 2, for two trajectories starting
from 1 km depth with initial mo-
menta 0.19 and 0.190 01.~b!
Bunch of 500 ray trajectories with
starting momenta equally space
within the interval from 0.2 to
0.205.
1-10
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THEORY AND APPLICATIONS OF RAY CHAOS TO . . . PHYSICAL REVIEW E64 036221
of this dependence are shown for each range. At 1500 km
randomly scattered points are interspersed with segmen
regular curves. At longer ranges the magnification by a fac
of 100 does not reveal smooth curves.

This situation is similar to that encountered in the pro
lem of chaotic scattering@24#. In the chaotic transmission
problem an inhomogeneous waveguide plays the role of
chaotic scatterer, and characteristics of this scatterer de
not only on inhomogeneities but on range as well.

It should be emphasized that different ray trajector
have different asymptotes at long range. This important
pect of the chaotic transmission phenomenon is connecte
the stickiness. This phenomenon, shortly discussed in
III A 1 and illustrated in Fig. 8~b!, leads to appearance o
long almost regular portions of a chaotic trajectory when
trajectory sticks to borders of some stable islands.

If the trajectories of the problem follow the Gaussian ty
process then their distribution can be described by a di
sion type equation with uniform asymptotes atr @r di f ,
wherer di f is the diffusional length. However, the presence
islands changes the uniformity property so that differ
bunches of rays can have different intermediate asympt
at long ranges. The role of islands is crucial for the appe
ance of jets of almost coherently propagating trajecto
~from the chaotic sea! that can occur and survive at very lon
acoustic paths. The concept of chaotic transmission has
introduced to attract the attention to the fact that even cha
rays can be distinguished by their different asymptotic
havior as a result of the non-Gaussian character of cha
dynamics.

C. Timefronts for unperturbed and perturbed waveguides

1. Range dependence of the time front

Figure 12 presents time fronts at three different ran
computed for a point source located at 1 km depth, i.e., at
axis of the unperturbed sound-speed profile. Starting m
menta,p0, of sample rays have been uniformly distribut
over the interval20.2<p0<0.2. The corresponding interva
of launch angles spans from211.5° to 11.5°. The latest par
of the arrival pattern is formed by axial rays that, as

FIG. 11. Travel times versus starting momentum at ranges
1500 km~upper row!, 3000 km~middle row!, and 5000 km~lower
row!. The plots in each column corresponds to the same interva
starting momenta.
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already know, remain regular in the presence of perturba
~30!. So, it is not surprising that axial tails of arrival patter
in the perturbed and unperturbed waveguides~cf. upper and
middle rows of plots in Fig. 12! look very much alike. Much
more surprising is that the earlier portion of the time fro
produced by chaotic rays remains, to some extent, simila
that in the unperturbed waveguide. Let us discuss this p
in more detail.

When the perturbation is absent, the time front has
folded accordion shape and consists of segments of sm
lines ~see the upper row of plots in Fig. 12!. Each segment is
formed by rays with the same identifierJ56N, where6 is
the sign of the launch angle andN is the number of ray
turning points~i.e., points of the trajectory where the grazin
angle changes sign!. Rays with the identifiers1N and2N
produce two neighboring intersecting segments. Rays w
positive and negative identifiers form two piecewise lines
accordionlike shape with some relative shift along the ti
axis.

This property remains valid for chaotic rays. This is illu
trated in Fig. 13 where magnified fragments of two tim
fronts from Fig. 12 computed for 3000 km range are p
sented in the same plot. All arrivals withJ52115 andJ
52116 are shown for both perturbed and unperturb
waveguides. Crosses and asterisks depicting arrivals in
range-independent model form two smooth segments. Po
and circles depicting arrivals with the same identifiers in
perturbed waveguide form two sets of randomly scatte
points in the neighborhood of two similar smooth segmen
Loosely, chaotic rays produce a dispersed version of the
tern typical of the range-independent waveguide.

Another manifestation of this property of ray dynamics
range-dependent waveguides was demonstrated in Ref.@7#,
where properties of eigenrays, that is, the rays that p
through the given point of the waveguide, were studied
merically. It turned out that groups of chaotic eigenrays w
the same identifier tend to form clusters of arrivals with s

of

of

FIG. 12. Time fronts at 1500 km~left column!, 3000 km
~middle column!, and 5000 km~right column! in the unperturbed
~upper row! and perturbed~middle row! waveguides. The lower
row of plot represents results computed for fans of rays from
narrow interval of starting momenta (20.14,p0,20.13). Points
represent ray arrivals in the perturbed waveguide, thick-solid li
represent arrivals in the unperturbed waveguide.
1-11
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I. P. SMIRNOV, A. L. VIROVLYANSKY, AND G. M. ZASLAVSKY PHYSICAL REVIEW E 64 036221
prisingly small time spreading within each cluster. Looki
at Fig. 13 we see that in our case this property of eigenr
should also take place. Indeed, it is natural to expect tha
the eigenrays at 3000 km range arriving at a depth of,
2.5 km with identifier2115 will be located at a segment o
horizontal linez52.5 km inside the area filled with circles
A time spread of this cluster will be about 0.25 s and th
will be no overlapping with neighboring clusters.

The lowermost row of plots in Fig. 12 presents contrib
tions to the above time fronts from rays with starting m
menta p0 from a narrow interval20.14<p0<20.13 that
corresponds to launch angles from28.3° to 27.45°. These
plots demonstrate a great difference between regular~thick-
solid lines! and chaotic~scattered points! time fronts. In the
range-independent waveguide arrivals are spread in a sm
and predictable way and cover one or two~depending on
range! segments of the time front depicted by solid lines.

In the presence of perturbation arrivals of rays with t
same starting momenta are spread over several segmen
the time front. It should be emphasized that chaotic natur
their dynamics reveals itself in the fact that rays with clo
starting parameters ‘‘jump’’ to different segments in a ra
dom manner. This situation is in sheer contrast with tha
the unperturbed waveguide, where trajectories with the s
identifier have starting momenta within a fixed angular int
val and rays with starting momenta outside this interval h
different identifiers.

2. Fractal properties of the time front fine structure

Fractal properties of rays can be characterized in differ
ways. Here we restrict our attention to the ray travel time a
examine the same interval of starting momenta,20.14,p0
,20.13 presented in Fig. 11 and in the lower row of plots
Fig. 12. As it has been already mentioned, the magnifica
presented in Fig. 11 do not reveal a smooth curve in
travel time dependence on the starting momentum at 3
and 5000 km ranges. It suggests that the function under
sideration has a fractal structure.

To obtain a quantitative characteristic of this structure
have computed ‘‘lengths’’L of curves that can be constructe
by connecting points presented in the left column of plots
Fig. 11. The ‘‘length’’L has been defined as the sum

FIG. 13. Fragments of the time fronts at 3000 km range form
by rays with identifiers equal to2115 and2116 in the perturbed
~points and circles! and unperturbed~asterisks and crosses!.
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L~D!5(
i

ut i 112t i u, ~32!

with t i being travel times of rays with starting momentap0,i
uniformly spaced apart byD (p0,i 112p0,i5D) over the in-
terval 20.14<p0,i<20.13. The computations have show
that L;D2d, wered is some positive constant from the in
terval 1,d,2. It confirms our assumption about a fract
structure of the timefront. The constantd is a fractal dimen-
sion and its range dependence is shown in Fig. 14.

D. Travel time gap

An interesting and somewhat unexpected feature of
time fronts depicted in the middle row of plots in Fig. 12
the presence of gaps between travel times of regular
chaotic rays. These gaps are also clearly seen in Fig
where travel time dependencies on starting momenta and
tograms~relative number of arrivals per a small fixed tim
interval! representing travel time distributions are show

d

FIG. 14. Fractal dimension of travel time dependence on st
ing momentum as a function of range.

FIG. 15. Upper row: travel time versus starting momenta. Low
row: histogram of ray travel times.
1-12
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THEORY AND APPLICATIONS OF RAY CHAOS TO . . . PHYSICAL REVIEW E64 036221
Note, that in the unperturbed waveguide~see the upper row
of plots in Fig. 12! the ray travel time are spread in a smoo
way without any gaps.

A qualitative explanation of this effect is as follows. I
range-independent waveguides with sound-speed pro
like those presented in Fig. 1 signals propagating thro
near-axial rays arrive at the given range later than sign
going through steep rays. It is a typical feature of underwa
acoustic waveguides@8,12#. The point is that most parts o
steep ray paths lie far from the sound-channel axis, i.e.
water layers with comparatively large sound speeds. Th
fore in the range-independent waveguide the travel timet at
the given range decreases withua0u, wherea0 is the launch
angle.

The presence of perturbation changes the situation. In
phase plane shown in Fig. 8~a! the starting positions of ray
emitted by a point source at 1 km depth lie on the strai
line z51 km. Rays with starting momentaup0u
,0.13 (ua0u,7.45°) belong to the stable island. They a
regular and form axial tails in the chaotic time fronts that a
very close to corresponding parts of regular time fro
shown in the upper row of plots in Fig. 12. But this is n
longer true of rays withup0u.0.13 (ua0u.7.45°), i.e., with
starting parameters from speckled regions of ‘‘chaotic se
Beyond this border we are entering an interval correspond
to predominantly chaotic rays. The latter have trajector
sampling larger depth intervals compared to that of unp
turbed rays with the same launch angles. Therefore an a
aged sound speed over the chaotic ray path is greater
that for the unperturbed regular ray with the same ini
conditions. This causes decrease of arrival times of cha
rays. In this sense, the existence of the gap is a consequ
of a sharp boundary between initial conditions of chaotic a
regular rays. It should be pointed out that the gap is
empty, but the density of arrivals inside this area is much l
than in neighboring parts of the time front.

Studying of evolution of the travel time dependence
the starting momentum with distance shows that the gap
pears already at ranges of a few hundred kilometers. I
seen in Fig. 16, where plots depicting travel times ver
starting momenta are shown for several ranges. The gap

FIG. 16. Travel time as a function of starting momentum at fo
different ranges.
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pears already at 300 km range.
A more detailed investigation of characteristics of the g

and their dependence on the parameters of the problem
be considered elsewhere. Here we just notice that in the t
front computed for the model considered in the preced
section and shown in Fig. 7 the gap is not so apparent a
Fig. 12. Nevertheless we can see a comparatively low d
sity of arrivals at times of about 672 s. This is also seen
the travel time dependence on the launch angle presente
Fig. 7. This portion of the time front is formed by rays wit
launch angles close to 8°. As we know, this angle cor
sponds to one of the two borders between regular and cha
rays. At the other border, corresponding to starting angle
about 5° and travel times of about 672.9 s, the gap is p
tically absent.

IV. RAY CHAOS IDENTIFICATION

This section consists of the main conclusive theoreti
part of the article: identification of presence the chao
nonchaotic rays on the basis of the analysis of the time fr
distributions. We shall start from an auxiliary material.

A. Phase diagram and wave-front evolution

Let us come back to the Munk profile~22! for the poten-
tial of the ray dynamics. For a given ‘‘energy’’H a ray ‘‘par-
ticle’’ bounces between points (z1 ,z2) as it is shown in the
upper panel of Fig. 17. The spatial frequency of the boun
~oscillations! is

r

FIG. 17. Upper panel: Typical dependence of the HamiltonianH
on depth,z. Lower panel: Plot schematically representing wav
front variations with range. Thick solid and dashed curves de
wave fronts corresponding to rays with starting momenta of diff
ent signs.
1-13
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v~H !5
dH~ I !

dI
.0, ~33!

while its derivative is negative

dv~ I !

dI
5v~H !

dv~H !

dH
5

d2H~ I !

dI2
,0 ~34!

as it follows from Fig. 2~b! for the main part of the interva
of accessible values ofI or H. In Eqs. ~33! and ~34! we
consider dependence ofv on H instead of the actionI. It
follows from Eq.~34! that the larger~or higher! is the energy
level H in the upper panel of Fig. 17, the greater is t
interval of bounces of a ray (z1 ,z2) and the longer is the
spatial cycle~period of oscillations!. At the same time, the
mean sound speed increases with the growth ofH. On phase
plane (z,p) an unperturbed ray trajectory is a circle~lower
panel of Fig. 17!. The distribution of ray depths taken at th
same range in the lower panel of Fig. 17 will be call
‘‘phase diagram.’’ Consider now all trajectories that hav
values of the energyH in the interval (H1 ,H2) and the same
valuez5z0 at the ranger 150. The thick line that connect
on the phase diagramall positions of rays with different
value of their momenta and energies but with the same ra
r is called thewave front, i.e., phase diagram provides
wave front on phase plane. In the lower panel of Fig. 17
show by thick lines three wave-fronts locations at rangesr 1
50, r 2.0, andr 3.r 2. They are parts of thefront spirals
that rotate clockwise. By thick-dash curves we show sim
wave fronts that rotate counterclockwise. Each time wh
the spiral acquires a full circle, the wave front in the pha
diagram gains more multiplicity values. It corresponds
appearance of two more breaking points in unperturbed t
fronts like those shown in Fig. 12~top row! or Fig. 7 ~top!.
Dash-curves wave fronts are similar to the described o
but slightly different since the potential shape in the up
panel of Fig. 17 is asymmetric. The outer points of the fro
are closer to final point since they move slower than inter
points due to Eq.~34!. The described way of the wave-fron
evolution on phase diagram is equivalent to the wave-fr
observation data as it is shown in Fig. 7~top!.

Let us consider arrival timet(L,H) depending on the po
sition of a point on the phase diagram. For the fixedL andH
it follows from Eqs.~4! and ~10!

t~L,H !5
1

c0
H E

0

L

pdz2HLJ 5
L

c0
~ Iv2H !. ~35!

After differentiation of Eq.~35! with respect toI and apply-
ing Eq. ~14! we obtain

dt~L,H !

dI
5

L

c0
I

dv

dI
. ~36!

In correspondence to Eq.~34!

dt~L,H !/dI,0
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meaning that the larger isI, i.e., the larger isH, the smaller is
arrival time. In other words the higher is a ray trajecto
cycle in the upper panel of Fig. 17, the faster a signal pro
gates along this ray.

Now let us add a perturbation.

B. Stochastic ray acceleration

Consider the energyHc ~action I c) corresponding to the
boundary of the stable island on phase plane. It follows fr
the overlapping criteria~24! that chaotic dynamics occurs i
a domain H.Hc (I .I c) or v,vc[v(Hc). More pre-
cisely, dependence of the frequencyv(H) on H ~or I ) is not
monotonic as it follows from Fig. 2. That makes a possibil
of chaotic dynamics in a finite domainHc,H,Hmax or I c
,I ,I max. A possible situation of a localized chaos is show
in Fig. 8~c! where the strong chaotic behavior is limited b
the central island, i.e.,Hc ~or I c), and by some outer value
Hmax or I max.

The dynamics in the stochastic sea can be presente
different ways and one of them is to consider an arrival ti
t(L,H0) with an initial energyH0.Hc as a sum of slightly
correlated additives

t~L,H0!5(
j 51

n

Dt j~H j ,L !, ~37!

whereDt j is a propagation time over a cycle

DL j52p/v~Ej ! ~38!

of two full bounces of a ray in Fig. 12. We assume that t
energyEj of the ray does not change its value along t
range intervalDL j and

(
j 51

n

DL j5L. ~39!

The chaotic ray dynamics means that due to the large num
law,

(
j 51

n

DL j'n^DL&5L ~40!

and

(
j 51

n

Š~DL j2^DL&!2
‹;n^~DL !2& ~41!

if n@1. Consequently, the distribution function forDL j is
focused close to the value

DL0;DL~H0!, H05~Hmax2Hc!/2 ~42!

and its width can be of orderDL0 /n1/2. In Sec. V we shall
see that chaotic behavior of near-axial rays due to mesos
inhomogeneities may require a different method of desc
tion and in this case relations~37!–~42! need some modifi-
cation.
1-14
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THEORY AND APPLICATIONS OF RAY CHAOS TO . . . PHYSICAL REVIEW E64 036221
As a result of this consideration, we can conclude tha
ray with a starting energy close toHc propagates in the sto
chastic sea area in such a way that its energyH grows from
Hc to the valueHmax with a maximum of the distribution
function somewhere atH0.Hc . It follows from the preced-
ing Sec. IV A that a ray withH.Hc has a shorter arriva
time. In analogy to the so-called stochastic particle accel
tion @15# this phenomenon can be namedstochastic ray ac-
celeration.

Criterion of chaos~24! is valid for the domain outside o
the large island in the center of Fig. 8~a!. Rays ~particles!
diffuse outside into the direction corresponding to actionI
greater thanI c . This yields a gap in ray intensities~numbers
of rays! at I nearI c . That is exactly what is observed in Fig
12: the gap in the number of rays for the same interva
actions leads to a gap in travel time distribution since cha
rays are accelerated compared to nonchaotic rays.

C. Diagnostics of ray chaos

Here we would like to formulate what kind of propertie
of the time front are responsible for the chaotic ray dynam
and how one can identify the phenomenon of chaos.

1. Time front gap

Appearance of the gap in the time front indicates the pr
ence of chaotic rays. Moreover, other types of weaker g
can appear at shorter arrival times.

2. A maximum in the arrival time distribution

A maximum of the number of the arrival rays appea
right before the arrival gap~Fig. 15, lower row!. We suppose
that the presence of this maximum is related to the phen
enon of stickiness@23,25# to the first resonance islands set
the domain of the chaotic dynamics. The stickiness to
corresponding set of islands can be also seen from the
8~c! of the phase plane. The sticky trajectories perform
most regular dynamics without escape to the stochastic
for a fairly long time. As a result, an analog to the stochas
acceleration is declined and a local maximum appears in
arrival time distribution. However, the issue of manifestati
of the stickiness in ray travel time distribution requires
further investigation.

3. Fuzziness and the front splitting

As it is seen from Fig. 12~middle and lower rows! there
is a tendency of splitting of fronts into few close fronts wi
a simultaneous fuzziness of the front structure. Typica
chaos occurrence can be interpreted as the strong phase
ing. We mean the phase of the ray trajectory represente
the angle variable,u. As a result, clockwise moving set o
fronts and counterclockwise moving set can intersect e
other at the same phase point what is impossible for reg
dynamics without special conditions. This intersection p
vides occurrence of satellite fronts after a shorter ti
~range! than without chaos.
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4. Phase jump

Another manifestation of the strong phase mixing is se
in Fig. 14 in extreme sensitivity of the number of turnin
points to the starting momentum. The jumps in number
turning points meansphase jumps, i.e., jumps of the angle
variableu, of order 2p. These irregular jumps lead to irregu
larity of the time front in perturbed waveguides~see Figs. 7
and 12!. An interesting and surprising phenomenon is that
spite of these random jumps, some regular structures are
parent in the time front. In the presence of perturbation
see a fuzzy version of the accordionlike shape of the ti
front typical of an unperturbed waveguide. A similar stabili
of portions of the time fronts formed by steep rays has b
observed in numerical simulations@8# and field experiments
@12#.

V. CHAOTIC RAY DYNAMICS IN A DEEP SEA
WAVEGUIDE WITH MESOSCALE INHOMOGENEITIES

Although there are a variety of factors affecting lon
range sound transmission through the real ocean, in un
water acoustics it is believed that in many cases the fluc
tions of the signal propagating in the deep sea at a ca
frequency of order 100 Hz are mainly determined by sou
speed variations induced by~i! internal waves and~ii ! me-
soscale inhomogeneities@13,17,26#.

The internal waves are characterized by horizontal spa
scales ranging from hundreds of meters to tens of kilome
and vertical scales of tens of meters. Their temporal sc
are on the order of hours. The word mesoscale den
sound-speed inhomogeneities whose horizontal scales r
from tens to hundreds kilometers, and which evolve on ti
scales of one month. The corresponding vertical scales
from 100 m to 1 km@27#.

The idealized environmental models discussed in the p
ceding sections are aimed at studying internal-waves rel
mechanisms of stochastic ray instability. In contrast, in
present section we focus on ray behavior in the environm
with mesoscale range variations and demonstrate num
cally that even in the absence of internal waves, these in
mogeneities alone can give rise to ray chaos. On the o
hand, it turns out that there exists a difference betwe
mechanisms leading to chaotic ray dynamics for the t
types of inhomogeneities.

A. Ocean mesoscale variability measured
during the acoustic engineering test

A particular model of the deep see environment used
this section has been constructed on the basis of real hy
graphic data~combined with the historical data! measured in
the North Pacific Ocean in 1994 during the acoustic en
neering test~AET! @12,13#. In this experiment sound trans
mission over 3000 km range was investigated and the ne
concurrent temperature and salinity measurement were
ried out along the acoustic paths. Much of the variabil
produced by internal waves has been smoothed out from
hydrographic data and after some processing the mode
sound-speed field with mesoscale spatial variations was
1-15
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I. P. SMIRNOV, A. L. VIROVLYANSKY, AND G. M. ZASLAVSKY PHYSICAL REVIEW E 64 036221
tained. This model representing typical features of the d
sea acoustic waveguide, has been used in our nume
simulations described below.

The sound-speed profile evolution within 3000 km ran
interval is shown in Fig. 18. Note that the depth of t
sound-channel axis~the minimum of the sound-speed pr
file! is gradually increasing with range. In this figure, we s
only largescale features of the sound-speed field while
details with lesser spatial scales, are not discernible. It is w

FIG. 18. Sound speed profiles at 3000 km range. Profiles
plotted every 300 km with a sound-speed offset 0.2 km/s.
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known that most of the small-scale variability in the enviro
ment occurs in the upper part of the waveguide, near
above the sound-channel axis@17,22#. A detailed visualiza-
tion of the refractive index variability at depths ranging fro
z50 km ~sea surface! to z51 km is presented in Fig. 19
In this figure, local extrema of the refractive index spread
an irregular way are clearly seen at depths of 500–800 m

Although the sound-speed fluctuations in the vicinity
the sound-channel axis are rather small~0.1–0.5 m/s!, they
can strongly affect near-axial rays propagating at small gr
ing angles. For these raysupu!n'1 and the Hamiltonian~2!
can be approximated by@1,2#

H5
p2

2
1U~r ,z! ~43!

with the ‘‘potential’’

U~r ,z!5@12n2~r ,z!#/2. ~44!

At each cross section of the waveguide,U as a function ofz
has a shape of some potential well with a minimum at
sound-channel axis. Due to the mesoscale inhomogene
this minimum is not sharply defined. Moreover, at small v
ues ofU usually there are a few local minima. Each min
mum forms a local waveguide channel and, as we shall
below, ray trajectories can be trapped in such microchann

re
FIG. 19. ~Color! The refractive index in the upper part of the waveguide at a range interval of 3000 km.
1-16
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THEORY AND APPLICATIONS OF RAY CHAOS TO . . . PHYSICAL REVIEW E64 036221
Furthermore, irregular ‘‘jumps’’ of trajectories between d
ferent channels lead to chaotic behavior of near-axial ray

So, the properties of mesoscale inhomogeneities d
from that of environmental models studied in Secs. II and
Results of ray tracing presented below show how this diff
ence reveals itself in ray dynamics.

B. Chaotic and regular rays

In our numerical simulations we have studied ray traj
tories leaving a point source set at 750 m depth and pro
gating in the range-dependent environment presented in F
18 and 19. The qualitative difference in behavior of ne
axial and steeper ray paths is shown in Fig. 20. Here
trajectories of three rays are shown in configuration~upper
row of plots! and phase~lower row! spaces. The steep ra
with the starting momentump050.2 ~left column! reveals a
weak sensitivity to range variations of the sound-speed p
file. The most part of its trajectory lies at large depths wh
the sound speed does not vary with range. A less steep
jectory with p050.07 ~middle column! is more sensitive to
range variations in the environment. It gradually shifts
larger depths following the variation of the sound-chan
axis seen in Fig. 18. However, this trajectory is still not a
fected significantly by mesoscale inhomogeneities. In c
trast, the behavior of the near-axial ray withp050.015~right
column! is almost completely determined by the mesosc
inhomogeneities: at every range the ray is trapped in on
local channels existing in this range, the ray ‘‘jumps’’ fro
one channel to another highly irregularly.

It is natural to expect that the coexistence of chaotic a
regular rays should manifest itself in the time-front structu
as it was the case for the idealized periodic environme
models considered in Secs. II and III.

The time front evaluated at 3000 km range is plotted
Fig. 21. It has been computed by tracing 20 000 fan rays w
starting momenta uniformly incremented within the interv
from 20.2 to 0.2. The early portion of the time front has t

FIG. 20. Trajectories of three rays in the configuration~upper
row of plots! and phase~lower row of plots! spaces. The rays sta
from the point set at 750 m depth with starting momentap050.2
~left column!, p050.07 ~central column!, andp050.015~right col-
umn!.
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folded accordion shape that we have already seen in Fig
and 12. This shape is typical of unperturbed waveguides w
smooth sound-speed profiles@8,12#. In the perturbed
waveguides such shapes are observed in the portions o
time fronts formed by regular rays~see the lower panel in
Fig. 7 and the middle row of plots in Fig. 12!. As we go to
large travel times the structure of the time front becom
irregular and this fact suggests that the late arrivals form
by near-axial rays are predominantly chaotic.

This expectation is consistent with the results presente
Fig. 22 where the travel time of the near-axial ray is sho
versus the starting momentum. This plot is similar to tho
presented in Fig. 11 where the same dependencies are s
for chaotic rays in the waveguide with periodic inhomogen
ity ~30! superimposed on Munk profile~22!. The lower panel
in Fig. 22 presents the number of ray turning points a
function ofp0. We have already seen a similar dependenc
Fig. 14. In both cases the extreme sensitivity to initial co
ditions is evident: a tiny variation of starting momentum o
ten causes a significant change of trajectory shape. This
sult gives an evidence that the trajectories of near-axial r
propagating at small grazing angles are highly unstable

FIG. 21. The time front at 3000 km range.

FIG. 22. Upper panel: Travel time dependence on the star
momentum for near-axial rays. Lower panel: Number of turni
points as a function of starting momentum for near-axial rays.
1-17
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FIG. 23. ~Color! Upper panel: Two ray trajectories starting from the point source at 750 m depth with initial momentap050.015~red!
and p050.01502 ~blue!. Lower panel: A closer view of the trajectories in the range of 650–950 km. The spatial distribution o
‘‘potential’’ U is shown by colors. The dark brown color corresponds to minima ofU(r ,z), i.e., it indicates sound-channel axes of loc
waveguides formed by mesoscale inhomogeneities. The yellow color corresponds to large values ofU, while intermediate values ofU are
marked by red.
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detailed numerical analysis of ray paths has demonstr
that trajectories which are initially neighbors, move apart
an exponential rate. The Lyapunov exponentsl defined by
Eq. ~27! and representing the quantitative characteristic
this stochastic instability, varies from 1/100 1/km to 1/
1/km.

The results of the ray tracing demonstrate that mesos
inhomogeneities give rise to ray chaos similarly to what c
appear due to the internal waves. However, the mechan
of chaotic behavior are different for the two types of pert
bations. This issue is a subject of the following section.

C. Mechanism of stochastic instability of near-axial rays
and gaps in travel times

In the preceding sections we have discussed stochasti
instability due to overlapping of different ray-medium res
nances. This mechanism implies that a range-dependent
turbation ‘‘responsible’’ for emergence of ray chaos is we
@see conditions~19! and ~20!#. For near-axial rays the fluc
tuations of the ‘‘potential’’U in the vicinity of the sound-
channel axis are of order of its mean value and the Ham
tonian ~43! cannot be split into a sum of a smoo
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unperturbed term and a rapidly varying weak perturbation
other words, near-axial rays cannot be treated in the scop
the perturbation theory described in Sec. II.

We suppose that the basic mechanism determining
chastic behavior of near-axial rays is related to the prese
of irregular local waveguide channels in the depth interva
500–800 m. This is illustrated in Fig. 23 where the trajec
ries of two rays with starting momentap0150.015~the same
trajectory as in the upper right plot in Fig. 20! and p02

50.015 02 are shown. In the upper panel we see that b
trajectories follow the same path up to 700 km range a
then separate abruptly. The lower panel graphs these tra
tories in the range of 650–950 km. The spatial distribution
the ‘‘potential’’ U(r ,z) are shown by colors. Dark color
correspond to small values ofU, while light colors denote
the larger values. Until 750 km range both trajectories pro
gate in the same local channel formed by mesoscale inho
geneities, but beyond this range one of the trajectorie
trapped into another channel located at larger depth~a fuzzy
dark stripe at depths of about 750 m!. Although at 850 km
the ray returns back to its former channel, beginning fro
750 km range the two trajectories follow different paths. O
numerical simulations show that this situation is typical a
1-18
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THEORY AND APPLICATIONS OF RAY CHAOS TO . . . PHYSICAL REVIEW E64 036221
‘‘jumps’’ of ray trajectories between neighboring local cha
nels play an important role in emergence of stochastic in
bility. So, the mechanisms leading to chaotic dynamics of
near-axial and steep rays are different.

In spite of this difference, the numerical simulations de
onstrate that the dynamics of near-axial rays have comm
features with the ray behavior observed in the preceding
tions for steeper rays in idealized environmental models.
most typical and important of them is the coexistence
chaotic and regular rays. Starting momenta of rays can
divided into some intervals corresponding to the predo
nantly regular and predominantly chaotic rays.

In Sec. III it has been observed that the presence o
boundary between such intervals causes a gap in ray tr
times. A similar phenomenon occurs for near-axial rays. T
gaps are seen in the time front in Fig. 21 as the intervals
low density of points. The gaps are more apparent in
travel time dependence on the starting momentum,p0,
shown in the upper panel of Fig. 22. There are clusters
rays whose travel times differ considerably from that
neighboring rays. An example of such a cluster is rep
sented by rays withp0 close to 0.2. There is a gap of abo
0.1 s between travel times of these rays and their neighb
Looking at the lower panel of Fig. 22 we see that the gap
travel times corresponds to a gap in the number of ray tu
ing points, i.e., rays with close times have similar ‘‘topol
gies.’’

VI. CONCLUSION

In this paper we have considered properties of chaotic
dynamics in deep sea propagation models. The most pa
the paper is devoted to studying of the waveguides w
smooth range-independent sound-speed profiles perturbe
weak inhomogeneities with periodic range variations. Para
eters of the perturbations have been chosen to model e
ronmental variations induced by internal waves.

It has been demonstrated that the overlapping of nonlin
ray-medium resonances gives rise to ray chaos. Chiriko
criterion @14,16# has been applied to examine this mech
nism of stochastic ray instability. A comparison of pred
tions made on the basis of Chirikov’s criterion to numeric
simulation results has shown that this approach allows on
make rough quantitative estimations characterizing size
regions in phase space occupied by chaotic rays. Furt
more, the phenomenon of resonance overlapping sheds s
light on strong dependence of global ray sensitivity on
form of the unperturbed~background! sound-speed profile
@8#. The key point here is that the background profile defin
the interval of cycle lengths of the unperturbed rays, and
de
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wider this interval is, more ray-medium resonances can e
for the given perturbation, and these resonances have m
chances for overlapping and giving rise to strong ray cha

Another important issue addressed in this paper is cha
properties of ray travel times. These characteristics of
wave field have received much attention in underwa
acoustics because they are considered as main observab
schemes of acoustic monitoring of ocean structure@10,11#.
We have examined extreme sensitivity of ray travel times
starting momenta and their fractal properties. In our num
cal simulations it has been shown that in the presence of
perturbation giving rise to ray chaos, there appear gaps in
ray travel time distribution that are absent in the unperturb
waveguide. We argue that the presence of such gaps is
lated to coexistence of chaotic and nonchaotic rays. It
been shown that this phenomenon has a known analo
theory of dynamical chaos. It is the so-called stochastic p
ticle acceleration@15#. A similar effect for chaotic rays tha
leads to appearance of gaps in the travel time distribution,
have called the stochastic ray acceleration.

Besides the variations in the environment induced by
ternal waves we have considered the influence of the
called mesoscale inhomogeneities with significantly lar
spatial scales. These inhomogeneities form local wavegu
near the sound-channel axis and near-axial rays can
trapped in these channels and make irregular ‘‘jumps’’ fro
one channel to another.

It turns out that while the mesoscale inhomogeneities o
slightly affect steep rays that remain regular, they give rise
chaos of near-axial rays propagating at small grazing ang
The most important feature of chaotic dynamics of near-a
rays is that it cannot be analyzed in the scope of perturba
theory based on smallness of perturbation. It requires
development of new approaches capable to describe how
‘‘jumps’’ between different microchannels reveal themselv
in ray travel times and other characteristics of the ray str
ture.
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